Efficient Nonparametric Causal Inference with Missing Exposure Information

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Nonparametric Causal Inference: Information Rates and Learning Algorithms

We investigate the problem of estimating the causal effect of a treatment on individual subjects from observational data; this is a central problem in various application domains, including healthcare, social sciences, and online advertising. Within the Neyman-Rubin potential outcomes model, we use the Kullback-Leibler (KL) divergence between the estimated and true distributions as a measure of...

متن کامل

MatchIt: Nonparametric Preprocessing for Parametric Causal Inference

MatchIt implements the suggestions of Ho, Imai, King, and Stuart (2007) for improving parametric statistical models by preprocessing data with nonparametric matching methods. MatchIt implements a wide range of sophisticated matching methods, making it possible to greatly reduce the dependence of causal inferences on hard-to-justify, but commonly made, statistical modeling assumptions. The softw...

متن کامل

Bayesian Nonparametric Modeling for Causal Inference

Researchers have long struggled to identify causal effects in non-experimental settings. Many recently-proposed strategies assume ignorability of the treatment assignment mechanism and require fitting two models – one for the assignment mechanism and one for the response surface. We propose a strategy that instead focuses on very flexibly modeling just the response surface using a Bayesian nonp...

متن کامل

Missing data as a causal inference problem

We address the problem of deciding whether there exists an unbiased estimator of a given relation Q, when data are missing not at random. We employ a formal representation called ‘Missingness Graphs’ to explicitly portray the causal mechanisms responsible for missingness and to encode dependencies between these mechanisms and the variables being measured. Using this representation, we define th...

متن کامل

Efficient nonparametric estimation of causal mediation effects

An essential goal of program evaluation and scientific research is the investigation of causal mechanisms. Over the past several decades, causal mediation analysis has been used in medical and social sciences to decompose the treatment effect into the natural direct and indirect effects. However, all of the existing mediation analysis methods rely on parametric modeling assumptions in one way o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The International Journal of Biostatistics

سال: 2020

ISSN: 1557-4679,2194-573X

DOI: 10.1515/ijb-2019-0087